导航:首页 > 股票交流 > 目标检测

目标检测

发布时间:2023-03-25 18:36:02

㈠ 文字检测与目标检测的区别

差异和乱培缺检测任务。
1、差异。文字中弯检查长宽比差异很大,而且普遍较小。目标检测普遍大。
2、检测任务。目标检测不仅要解决定位问题,还要解决目标哗辩分类问题,文本检测无需对目标分类。并且文本形状复杂多样

㈡ 目标检测概念

目标检测的实质是多目标的定位,即要在图片中定位多个目标物体。

例裤纤袜如下图,既要定胡激位各个目标,还需要将不同目标用不同颜色的框表示。

1、目标检测和识别的区别在于:

1)目标识别:图像中描述的是哪个物体?

输出:图像中目标的位置和标签竖纳(名称)。

例如:对于一幅图像中的物体,在确定其类别的基础上,进一步确定这个目标是谁(比如:小明,短脚猫等)

2)目标检测:该目标在图像中什么位置?

输出:图像中有没有目标。

例如:对于一幅图像,确定图像中目标的位置、大小以及类别(是哪一类:比如人,猫等)

2、目标检测的最佳模型

3、目标识别方法

㈢ 目标检测算法经典论文回顾(一)

论文名称:Rich feature hierarchies for accurate object detection and semantic segmentation

提出时间:2014年

论文地址:https://openaccess.thecvf.com/content_cvpr_2014/papers/Girshick_Rich_Feature_Hierarchies_2014_CVPR_paper.pdf

针对问题:

从Alexnet提出后,作者等人思考如何利用卷积网络来完成检测任务,即输入一张图,实现图上目标的定位(目标在哪)和分类(目标是什么)两个目标,并最终完成了RCNN网络模型。

创新点:

RCNN提出时,检测网络的执行思路还是脱胎于分类网络。也就是深度学习部分仅完成输入图像块的分类工作。那么对检测任务来说如何完成目标的定位呢,作者采用的是Selective Search候选区域提取算法,来获得当前输入图上可能包含目标的不同图像块,再将图像块祥谈裁剪到固定的尺寸输入CNN网络来进行当前图像块类别的判断。

参考博客: https://blog.csdn.net/briblue/article/details/82012575。

论文题目:OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks

提出时间:2014年

论文地址:https://arxiv.org/pdf/1312.6229.pdf

针对问题:

该论文讨论了,CNN提取到的特征能够同时用于定位和分类两个任务。也就是在CNN提取到特征以后,在网络后端组织两组卷积或全连接层,一组用于实现定位,输出当前图像上目标的最小外接矩形框坐标,一组用于分类,输出当前图像上目标的类别信息。也是以此为起点,检测网络出现基础主干网络(backbone)+分类头或回归头(定位头)的网络设计模式雏形。

创新点:

在这篇论文中还有两个比较有意思的点,一是作者认为全连接层其实质实现的操作和1x1的卷积是类似的,而且用1x1的卷积核还可以避免FC对输入特征尺寸的限制,那用1x1卷积来替换FC层,是否可行呢?作者在测试时通过将全连接层替换为1x1卷积核证明是可行的;二是提出了offset max-pooling,也就是对池化层输入特征不能整除的情况,通过进行滑动池化并将不同的池化层传递给后续网络层来提高效果。另外作者在论文里提到他的用法是先基于主干网络+分类头训练,然后切换分类头为回归头,再训练回归头的参数,最终完成整个网络的训练。图像的输入作者采用的是直接在输入图上利用卷积核划窗。然后在指定的每个网络层上回归目标的尺度和空间位置。

参考博客:升帆 https://blog.csdn.net/qq_35732097/article/details/79027095

论文题目:Scalable Object Detection using Deep Neural Networks

提出时间:2014年

论文地址:https://openaccess.thecvf.com/content_cvpr_2014/papers/Erhan_Scalable_Object_Detection_2014_CVPR_paper.pdf

针对问题:

既然CNN网络提取的特征可以直接用于检测任务(定位+分类),作者就尝试将目标框(可能包含目标的最小外包矩形框)提取任务放到CNN中进行。也就是直接通过网络完成输入图像上目标的定位工作。

创新点:

本文作者通过将物体检测问题定义为输出多个bounding box的回归问题. 同时每个bounding box会输出关于是否包含目标物体的置信度, 使得模型更加紧凑和高效。先通过聚类获得图像中可能有目标的位置聚类中心,(800个anchor box)然后吵宴雹学习预测不考虑目标类别的二分类网络,背景or前景。用到了多尺度下的检测。

参考博客: https://blog.csdn.net/m0_45962052/article/details/104845125

论文题目:DeepBox: Learning Objectness with Convolutional Networks

提出时间:2015年ICCV

论文地址:https://openaccess.thecvf.com/content_iccv_2015/papers/Kuo_DeepBox_Learning_Objectness_ICCV_2015_paper.pdf

主要针对的问题:

本文完成的工作与第三篇类似,都是对目标框提取算法的优化方案,区别是本文首先采用自底而上的方案来提取图像上的疑似目标框,然后再利用CNN网络提取特征对目标框进行是否为前景区域的排序;而第三篇为直接利用CNN网络来回归图像上可能的目标位置。

创新点:

本文作者想通过CNN学习输入图像的特征,从而实现对输入网络目标框是否为真实目标的情况进行计算,量化每个输入框的包含目标的可能性值。

参考博客: https://www.cnblogs.com/zjutzz/p/8232740.html

论文题目:AttentionNet: AggregatingWeak Directions for Accurate Object Detection

提出时间:2015年ICCV

论文地址:https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Yoo_AttentionNet_Aggregating_Weak_ICCV_2015_paper.pdf

主要针对的问题:

对检测网络的实现方案进行思考,之前的执行策略是,先确定输入图像中可能包含目标位置的矩形框,再对每个矩形框进行分类和回归从而确定目标的准确位置,参考RCNN。那么能否直接利用回归的思路从图像的四个角点,逐渐得到目标的最小外接矩形框和类别呢?

创新点:

通过从图像的四个角点,逐步迭代的方式,每次计算一个缩小的方向,并缩小指定的距离来使得逐渐逼近目标。作者还提出了针对多目标情况的处理方式。

参考博客: https://blog.csdn.net/m0_45962052/article/details/104945913

论文题目:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

提出时间:2014年

论文地址:https://link.springer.com/content/pdf/10.1007/978-3-319-10578-9_23.pdf

针对问题:

如RCNN会将输入的目标图像块处理到同一尺寸再输入进CNN网络,在处理过程中就造成了图像块信息的损失。在实际的场景中,输入网络的目标尺寸很难统一,而网络最后的全连接层又要求输入的特征信息为统一维度的向量。作者就尝试进行不同尺寸CNN网络提取到的特征维度进行统一。

创新点:

作者提出的SPPnet中,通过使用特征金字塔池化来使得最后的卷积层输出结果可以统一到全连接层需要的尺寸,在训练的时候,池化的操作还是通过滑动窗口完成的,池化的核宽高及步长通过当前层的特征图的宽高计算得到。原论文中的特征金字塔池化操作图示如下。

参考博客 :https://blog.csdn.net/weixin_43624538/article/details/87966601

论文题目:Object detection via a multi-region & semantic segmentation-aware CNN model

提出时间:2015年

论文地址:https://openaccess.thecvf.com/content_iccv_2015/papers/Gidaris_Object_Detection_via_ICCV_2015_paper.pdf

针对问题:

既然第三篇论文multibox算法提出了可以用CNN来实现输入图像中待检测目标的定位,本文作者就尝试增加一些训练时的方法技巧来提高CNN网络最终的定位精度。

创新点:

作者通过对输入网络的region进行一定的处理(通过数据增强,使得网络利用目标周围的上下文信息得到更精准的目标框)来增加网络对目标回归框的精度。具体的处理方式包括:扩大输入目标的标签包围框、取输入目标的标签中包围框的一部分等并对不同区域分别回归位置,使得网络对目标的边界更加敏感。这种操作丰富了输入目标的多样性,从而提高了回归框的精度。

参考博客 :https://blog.csdn.net/alfred_torres/article/details/83022967

论文题目:Fast-RCNN

提出时间:2015年

论文地址:https://openaccess.thecvf.com/content_iccv_2015/papers/Girshick_Fast_R-CNN_ICCV_2015_paper.pdf

针对问题:

RCNN中的CNN每输入一个图像块就要执行一次前向计算,这显然是非常耗时的,那么如何优化这部分呢?

创新点:

作者参考了SPPNet(第六篇论文),在网络中实现了ROIpooling来使得输入的图像块不用裁剪到统一尺寸,从而避免了输入的信息丢失。其次是将整张图输入网络得到特征图,再将原图上用Selective Search算法得到的目标框映射到特征图上,避免了特征的重复提取。

参考博客 :https://blog.csdn.net/u014380165/article/details/72851319

论文题目:DeepProposal: Hunting Objects by Cascading Deep Convolutional Layers

提出时间:2015年

论文地址:https://openaccess.thecvf.com/content_iccv_2015/papers/Ghodrati_DeepProposal_Hunting_Objects_ICCV_2015_paper.pdf

主要针对的问题:

本文的作者观察到CNN可以提取到很棒的对输入图像进行表征的论文,作者尝试通过实验来对CNN网络不同层所产生的特征的作用和情况进行讨论和解析。

创新点:

作者在不同的激活层上以滑动窗口的方式生成了假设,并表明最终的卷积层可以以较高的查全率找到感兴趣的对象,但是由于特征图的粗糙性,定位性很差。相反,网络的第一层可以更好地定位感兴趣的对象,但召回率降低。

论文题目:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

提出时间:2015年NIPS

论文地址:https://proceedings.neurips.cc/paper/2015/file/-Paper.pdf

主要针对的问题:

由multibox(第三篇)和DeepBox(第四篇)等论文,我们知道,用CNN可以生成目标待检测框,并判定当前框为目标的概率,那能否将该模型整合到目标检测的模型中,从而实现真正输入端为图像,输出为最终检测结果的,全部依赖CNN完成的检测系统呢?

创新点:

将当前输入图目标框提取整合到了检测网络中,依赖一个小的目标框提取网络RPN来替代Selective Search算法,从而实现真正的端到端检测算法。

参考博客 :https://zhuanlan.hu.com/p/31426458

㈣ 目标检测

什么是目标检测?

我们先来看一张图片

我相信大家看完这张图片已经知道什么是目标检测了

目标检查有什么用呢?

目标检测可以用于标注物体,就像上图一样dog是dog,car是car有了它就能很好的将物体从一张图片中将他们分类出来。

在实际生活中它我还知道它现在用于闯红灯的车辆检测,它会把闯红灯的带物车牌给记录下来,还会用于。并且运用在了无人驾驶的技术上。

此外应该还有很实际的多用处。

如何实现目标检测?

1、区域选择

传统的方法是穷举法,仔细想想我们给计算机一张图片它不知道目标在哪儿,也不知道目标有多大,于是就事先给定一个范围然后在这张图片上按照这个给定的尺寸一行一行一列一列的去找,如果没有找到又要从新更改给定的尺寸一直这样循环。这个就是穷举法,穷举法耗时耗力,影响程序运行效率。

那么有没有解决的办法呢?答案是肯定有的。

2、特征提取

特团行液征提取就是把图片中物体的特征提取出来,比如人类的特征就有很多会穿衣服啊、直立行走啊、有的人近视眼还会戴眼镜啊,使用神经网络可以有效的提取出比较优秀的特征出来,。

3、分类器

分类器就是根据提取出来的特征进行分类,比如区分绿叶和花朵,它们的特征就有一项非常不一样,那就是它们的颜色一个是绿色一个常常是鲜艳的颜色,假设只塌物是分类绿叶和花朵的话,那么只需要区分他们的颜色就好了。

㈤ 目标检测算法是什么

目标检测算法是先通过训练集学习一个分类器,然后在测试图像中悄销者以不同scale的窗口滑动扫描整个图像;每次扫描做一下分类,判断一下当前的这个窗口是否为要检测的目标。检测算法的核心是分类,分类的核心一个是用什么特征,一个是用哪种分类器。

(5)目标检测扩展阅读:

目标检测算法可以分为:

1、背景建模法,包含时间平均模型、混合高斯模型、动态纹理背景、PCA模型、时一空联合分布背景模型

2、点检测法,包含Moravec检测器、Harris检测器 、仿射不斗陪变点检测、S IFT

3、图像分割法,包含Mean Shift方法 、Graph-cut方法、Active Contours方法

4、聚类分析法,包含支持向量机、神经网络、Adaptive Boosting

5、运动矢量场启薯法,包含基于运动矢量场的方法

㈥ 图像分割和目标检测哪个难

目标检测要难一点薯绝。目标检测是图像中的目标检测涉及识别各种子图像并且围绕每个识别的子数毁姿图像余锋周围绘制一个边界框,与图像分割相比,这个问题要复杂一点。

㈦ 目标检测和背景检测的区别

1、目标检测是计算机视觉领域的传统任务,与图像识别不同。
2、目标检测任务是找出图像或李基视频中人们感兴氏搭趣的物体,并同时检测出它们的位置和大小。
3、背景 目标检测是计歼扰拿算机视觉和数字图像处理的一个热门方向,广泛应用于诸多领域,有重要的意义。

㈧ 使用 YOLO v5 进行目标检测

在这篇文章中,我们将使用来自 AWS 上的 COCO 数据集(可定制)的图像设置和运行 YOLO。

一般来说,分类技术在自动驾驶 汽车 中没有多大帮助,因为它只预测图像中的一个对象,并且不给出该图像的位置。 而目标检测在自动驾驶 汽车 中非常重要,可以检测场景中的对象及其位置。 YOLO(你只看一次)是由 Joseph Redmon 等人创建的一种高速实时对象检测算法。 YOLO使用卷积神经网络 (CNN)解决概率的回归问题。 后来又进行了一些修改。 为了进行预测,YOLO 只需要通过 CNN 进行一次前向传播。 它输出具有相应边界框的对轿羡姿象。 它广泛用于自动驾驶 汽车 以检测场景中的物体。


第 1 步:设置帐户(这步可以跳过)

登录wandb.ai网站并复制以下内容:

来自 wandb.ai/authorize 的 API 密钥
wandb.ai/settings 中的团队名称。 默认团派乱队名称将是用户 ID。

第 2 步:创建 AWS 实例(如果你在本机训练这步也可以跳过)

在闭绝创建实例时,选择“Deep Learning AMI (Ubuntu 18.04) Version 47.0 — ami-01f1096e6659d38fa”AMI,因为它具有深度学习任务所需的库。 如果我们在“选择AWS机器映像 (AMI)”步骤中搜索“deep learning”,我们可以找到这。为“实例类型”选择 P3 实例。 实例类型 p3.2xlarge(V100) 就足够了。为了节省成本,请在“配置实例”步骤下选择 Spot 实例。

第 3 步:安装依赖项

登录 AWS 实例后,使用以下命令创建 conda 环境并设置 Weights & Bias 环境变量:

第 4 步:训练、验证和测试

第 5 步:检查指标

验证集真实标签

验证集预测标签

训练的损失

测试

以上所有结果都会保存在文件夹yolov5runsdetectexp下

㈨ 经典目标检测算法介绍

姓名:牛晓银;学号:20181213993;学院:计算机科学与技术

转自:https://zhuanlan.hu.com/p/34142321

【嵌牛导读】:目标检测,也叫目标提取,是一种基于目标几何和统计特征的图像分割。随着计算机技术的发展和计算机视觉原理的广泛应用,利用计算机图像处理技术对目标进行实时跟踪研究越来越热门,对目标进行动态实时跟踪定位在智能化交通系统、军事目标检测及医学导航手术中手术器械定位等方面具有广泛的应用价值。

【嵌牛鼻子】:目标检测、检测模型、计算机视觉

【嵌牛提问】:你知道或者用过哪些目标检测算法?

【嵌牛正文】:

(一)目标检测经典工作回顾

本文结构

两阶段模型因其对图片的两阶段处理得名,也称为基于区域(Region-based)的方法,我们选取R-CNN系列工作作为这一类型的代表。圆颂中

R-CNN: R-CNN系列的开山之作

论文链接:  Rich feature hierarchies for accurate object detection and semantic segmentation

本文的两大贡献:1)CNN可用于基于区域的定位和分割物体;2)监督训练样本数紧缺时,在额外的数据上预训练的模型经过fine-tuning可以取得很好的效果。第一个贡献影响了之后几乎所有2-stage方法,而第二个贡献中用分类任务(Imagenet)中训练好的模型作为基网络,在检测问题上fine-tuning的做法也在之后的工作中一直沿用。

传统的计算机视觉方法常用精心设计的手工特征(如SIFT, HOG)描述图像,而深度学习的方法则倡导习得特征,从图像分类任务的经验来看,CNN网络自动习得的特征取得的效果已经超出了手工设计的特征。本篇在局部区域应用卷积网络,以发挥卷积网络学习高质量特征的能力。

R-CNN将检测抽象为两个过程,一是基于图片提出若干可能包含物体的区域(即图片的局部裁剪,被称为Region Proposal),文中使用的是Selective Search算法;二是在提出的这些区橘山域上运行当时表现最好的分类网络(AlexNet),得到每个区域内物体的类别。

另外,文章中的两个做法值得注意。

一是数据的准备。输入CNN前,我们需要根据Ground Truth对提出的Region Proposal进行标记,这里使用的指标是IoU(Intersection over Union,交并比)。IoU计算了两个区域之交的面积跟它们之并的比,描述了两个区域的重合程度。

文章中特别提到,樱隐IoU阈值的选择对结果影响显著,这里要谈两个threshold,一个用来识别正样本(如跟ground truth的IoU大于0.5),另一个用来标记负样本(即背景类,如IoU小于0.1),而介于两者之间的则为难例(Hard Negatives),若标为正类,则包含了过多的背景信息,反之又包含了要检测物体的特征,因而这些Proposal便被忽略掉。

另一点是位置坐标的回归(Bounding-Box Regression),这一过程是Region Proposal向Ground Truth调整,实现时加入了log/exp变换来使损失保持在合理的量级上,可以看做一种标准化(Normalization)操作。

小结

R-CNN的想法直接明了,即将检测任务转化为区域上的分类任务,是深度学习方法在检测任务上的试水。模型本身存在的问题也很多,如需要训练三个不同的模型(proposal, classification, regression)、重复计算过多导致的性能问题等。尽管如此,这篇论文的很多做法仍然广泛地影响着检测任务上的深度模型革命,后续的很多工作也都是针对改进这一工作而展开,此篇可以称得上"The First Paper"。

Fast R-CNN: 共享卷积运算

论文链接: Fast R-CNN

文章指出R-CNN耗时的原因是CNN是在每一个Proposal上单独进行的,没有共享计算,便提出将基础网络在图片整体上运行完毕后,再传入R-CNN子网络,共享了大部分计算,故有Fast之名。

上图是Fast R-CNN的架构。图片经过feature extractor得到feature map, 同时在原图上运行Selective Search算法并将RoI(Region of Interset,实为坐标组,可与Region Proposal混用)映射到到feature map上,再对每个RoI进行RoI Pooling操作便得到等长的feature vector,将这些得到的feature vector进行正负样本的整理(保持一定的正负样本比例),分batch传入并行的R-CNN子网络,同时进行分类和回归,并将两者的损失统一起来。

RoI Pooling 是对输入R-CNN子网络的数据进行准备的关键操作。我们得到的区域常常有不同的大小,在映射到feature map上之后,会得到不同大小的特征张量。RoI Pooling先将RoI等分成目标个数的网格,再在每个网格上进行max pooling,就得到等长的RoI feature vector。

文章最后的讨论也有一定的借鉴意义:

multi-loss traing相比单独训练classification确有提升

multi-scale相比single-scale精度略有提升,但带来的时间开销更大。一定程度上说明CNN结构可以内在地学习尺度不变性

在更多的数据(VOC)上训练后,精度是有进一步提升的

Softmax分类器比"one vs rest"型的SVM表现略好,引入了类间的竞争

更多的Proposal并不一定带来精度的提升

小结

Fast R-CNN的这一结构正是检测任务主流2-stage方法所采用的元结构的雏形。文章将Proposal, Feature Extractor, Object Classification&Localization统一在一个整体的结构中,并通过共享卷积计算提高特征利用效率,是最有贡献的地方。

Faster R-CNN: 两阶段模型的深度化

论文链接: Faster R-CNN: Towards Real Time Object Detection with Region Proposal Networks

Faster R-CNN是2-stage方法的奠基性工作,提出的RPN网络取代Selective Search算法使得检测任务可以由神经网络端到端地完成。粗略的讲,Faster R-CNN = RPN + Fast R-CNN,跟RCNN共享卷积计算的特性使得RPN引入的计算量很小,使得Faster R-CNN可以在单个GPU上以5fps的速度运行,而在精度方面达到SOTA(State of the Art,当前最佳)。

本文的主要贡献是提出Regional Proposal Networks,替代之前的SS算法。RPN网络将Proposal这一任务建模为二分类(是否为物体)的问题。

第一步是在一个滑动窗口上生成不同大小和长宽比例的anchor box(如上图右边部分),取定IoU的阈值,按Ground Truth标定这些anchor box的正负。于是,传入RPN网络的样本数据被整理为anchor box(坐标)和每个anchor box是否有物体(二分类标签)。RPN网络将每个样本映射为一个概率值和四个坐标值,概率值反应这个anchor box有物体的概率,四个坐标值用于回归定义物体的位置。最后将二分类和坐标回归的损失统一起来,作为RPN网络的目标训练。

由RPN得到Region Proposal在根据概率值筛选后经过类似的标记过程,被传入R-CNN子网络,进行多分类和坐标回归,同样用多任务损失将二者的损失联合。

小结

Faster R-CNN的成功之处在于用RPN网络完成了检测任务的"深度化"。使用滑动窗口生成anchor box的思想也在后来的工作中越来越多地被采用(YOLO v2等)。这项工作奠定了"RPN+RCNN"的两阶段方法元结构,影响了大部分后续工作。

单阶段(1-stage)检测模型

单阶段模型没有中间的区域检出过程,直接从图片获得预测结果,也被成为Region-free方法。

YOLO

论文链接: You Only Look Once: Unified, Real-Time Object Detection

YOLO是单阶段方法的开山之作。它将检测任务表述成一个统一的、端到端的回归问题,并且以只处理一次图片同时得到位置和分类而得名。

YOLO的主要优点:

快。

全局处理使得背景错误相对少,相比基于局部(区域)的方法, 如Fast RCNN。

泛化性能好,在艺术作品上做检测时,YOLO表现比Fast R-CNN好。

YOLO的工作流程如下:

1.准备数据:将图片缩放,划分为等分的网格,每个网格按跟Ground Truth的IoU分配到所要预测的样本。

2.卷积网络:由GoogLeNet更改而来,每个网格对每个类别预测一个条件概率值,并在网格基础上生成B个box,每个box预测五个回归值,四个表征位置,第五个表征这个box含有物体(注意不是某一类物体)的概率和位置的准确程度(由IoU表示)。测试时,分数如下计算:

等式左边第一项由网格预测,后两项由每个box预测,以条件概率的方式得到每个box含有不同类别物体的分数。 因而,卷积网络共输出的预测值个数为S×S×(B×5+C),其中S为网格数,B为每个网格生成box个数,C为类别数。

3.后处理:使用NMS(Non-Maximum Suppression,非极大抑制)过滤得到最后的预测框

损失函数的设计

损失函数被分为三部分:坐标误差、物体误差、类别误差。为了平衡类别不均衡和大小物体等带来的影响,损失函数中添加了权重并将长宽取根号。

小结

YOLO提出了单阶段的新思路,相比两阶段方法,其速度优势明显,实时的特性令人印象深刻。但YOLO本身也存在一些问题,如划分网格较为粗糙,每个网格生成的box个数等限制了对小尺度物体和相近物体的检测。

SSD: Single Shot Multibox Detector

论文链接: SSD: Single Shot Multibox Detector

SSD相比YOLO有以下突出的特点:

多尺度的feature map:基于VGG的不同卷积段,输出feature map到回归器中。这一点试图提升小物体的检测精度。

更多的anchor box,每个网格点生成不同大小和长宽比例的box,并将类别预测概率基于box预测(YOLO是在网格上),得到的输出值个数为(C+4)×k×m×n,其中C为类别数,k为box个数,m×n为feature map的大小。

小结

SSD是单阶段模型早期的集大成者,达到跟接近两阶段模型精度的同时,拥有比两阶段模型快一个数量级的速度。后续的单阶段模型工作大多基于SSD改进展开。

检测模型基本特点

最后,我们对检测模型的基本特征做一个简单的归纳。

检测模型整体上由基础网络(Backbone Network)和检测头部(Detection Head)构成。前者作为特征提取器,给出图像不同大小、不同抽象层次的表示;后者则依据这些表示和监督信息学习类别和位置关联。检测头部负责的类别预测和位置回归两个任务常常是并行进行的,构成多任务的损失进行联合训练。

相比单阶段,两阶段检测模型通常含有一个串行的头部结构,即完成前背景分类和回归后,把中间结果作为RCNN头部的输入再进行一次多分类和位置回归。这种设计带来了一些优点:

对检测任务的解构,先进行前背景的分类,再进行物体的分类,这种解构使得监督信息在不同阶段对网络参数的学习进行指导

RPN网络为RCNN网络提供良好的先验,并有机会整理样本的比例,减轻RCNN网络的学习负担

这种设计的缺点也很明显:中间结果常常带来空间开销,而串行的方式也使得推断速度无法跟单阶段相比;级联的位置回归则会导致RCNN部分的重复计算(如两个RoI有重叠)。

另一方面,单阶段模型只有一次类别预测和位置回归,卷积运算的共享程度更高,拥有更快的速度和更小的内存占用。读者将会在接下来的文章中看到,两种类型的模型也在互相吸收彼此的优点,这也使得两者的界限更为模糊。

阅读全文

与目标检测相关的资料

热点内容
做核酸检测的是哪个公司股票代码 浏览:101
公司股票市值是 浏览:299
炒股的经验总结报告 浏览:174
于娜微博 浏览:992
股票高级技术分析pdf 浏览:790
网络炒汇 浏览:664
网格交易法做股票 浏览:877
新三板股票不能交易 浏览:442
贵航股份的股票趋势 浏览:600
股票公司市价 浏览:851
梦到别人买股票赚了 浏览:504
重庆天桥 浏览:332
正规券商股票开户炒股 浏览:598
让同花顺股票基金自选在一起 浏览:427
紧急公关买股票为什么会赚 浏览:208
天坛生物股票股票行情 浏览:534
混合基金股票持仓多少比较好 浏览:556
广发证券可以买的的股票 浏览:232
股票软件ipad 浏览:966
嘉实多元a 浏览:649